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Abstract

Some of the most promising work in the area of
enforcing secure information �ow in programs is
based on static analyses of source code� However�
as yet� these e�orts have not had much impact in
practice� We present a new approach to analyz�
ing programs statically for secrecy and integrity
�ow violations� The analysis is characterized as a
form of type inference in a secure �ow type sys�

tem� The type system provides a uniform frame�
work for traditional type checking of programs and
information �ow control� Type�correct programs
have principal types that characterize how they
can be called securely� Applications of the type
system include �ow analysis of legacy code as well
as code written in newly�emerging Web languages
like Java�tm��

Keywords� secure information �ow� certi�cation�
type systems� Web programming

� Introduction

Secure information �ow within systems having
multiple sensitivity levels has long been a widely�
recognized problem� The classical problem is that
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of a multilevel subject� one with a range of security
classes� executing code that either accidentally or
maliciously leaks or corrupts sensitive data� Leak�
ing such data is a violation of secrecy while its
corruption is a violation of integrity 	
� ��� Early
work in the area was motivated by the need to
securely handle information classi�ed at di�erent
levels within the government� the military in par�
ticular� But the problem is now also apparent
within the context of Internet programming and
newly�emerging Web programming languages like
Java 	���

With Java� programs� called Java applets�tm��
can be downloaded from the Internet and executed
with user privileges by a Java�compatible Web
browser like HotJava�tm� or Netscape Navigator
���� There are obvious secrecy and integrity prob�
lems here� For instance a downloaded applet may
attempt to make the contents of a user�s private
�les� such as mailfolders or log �les� public by mail�
ing them to remote sites� Currently� users have
the option� as in HotJava� to forbid downloaded
code from accessing any local �les� This is called
the Applet Host mode� In fact� this is the only
�security mode� available in the Netscape Naviga�
tor beta release� But such steps will undoubtedly
prove to be too impractical� Useful applets� like
mail and other transaction tools� will need access
to private �les in order to perform their tasks�

This is where the static analysis of code for se�
cure information �ow can provide a �ner level of
security in terms of secrecy as well as integrity�
For instance� it can allow access to private �les

�



yet guarantee that their contents are not stored
in public places� We begin by examining some of
these analyses in the next section� Unfortunately�
they have had little impact in practice� In Sec�
tion �� we propose an alternative form of static
analysis based on a powerful� yet very practical�
notion called type inference�

� Information Flow Control

Strategies

Secure information �ow within systems was stud�
ied years ago by Bell and LaPadula 	�� �� This was
followed by the work of Denning who presented a
lattice model of secure information �ow certi�ca�
tion and gave an algorithm for analyzing programs
for secure implicit and explicit �ows 	�� �� �� Den�
ning provided an informal treatment of the sound�
ness of secure �ow certi�cation� A more formal
treatment of its soundness was given by Mizuno
and Schmidt 	��� which is discussed in 	�
�
Andrews and Reitman 	�� in a related e�ort�

proposed extending a traditional axiomatic logic
for program correctness with secure �ow certi�ca�
tion� Their emphasis was on a formal speci�ca�
tion of certi�cation in a programming logic� They
did not consider any practical algorithms for their
extended logic� nor was soundness of the logic ad�
dressed� These are major drawbacks of their work�

The more recent work of Ban�atre� Bryce� and Le
M�etayer 	� is based on statically detecting �ow vi�
olations from an accessibility graph constructed for
a program� These graphs record information �ows
among variables at certain program points� This
work and secure �ow certi�cation are discussed in
more detail in the next two sections�

��� Denning�s Secure Flow Certi��
cation

In the lattice model of secure �ow certi�cation�
a �ow policy is represented by a poset � S���

where S is a set of security classes and � is a
partial order� called the �ow relation� specifying
permissible �ows between classes� Every variable

x is assigned a security class denoted by x and it
is assumed that x is static and can be determined
from class declarations given in a program� If x
and y are variables and there is a �ow of informa�
tion from x to y then it is a permissible �ow i�
x� y�
Every programming construct has a certi�cation

rule� Some rules certify explicit �ows while others
certify implicit �ows� For example� an assignment
statement y �� x is certi�ed i� x� y� that is� the
�ow of information from the security class of x to
that of y is prescribed by the �ow relation� This
is an example of certifying an explicit �ow� The
rules for conditional constructs� such as if state�
ments and while loops certify implicit �ows� For
example� the conditional statement

if x � � then y �� � else z �� �

is certi�ed i� x� y and x� z�
If the poset � S��� is a lattice� so that for

any pair of classes there are unique upper and
lower bound classes� then a simple attribute gram�
mar can be given to certify programs� It con�
sists only of synthesized attributes which are se�
curity classes computed using least upper bound
��� and greatest lower bound ��� operators 	��
For instance� the certi�cation condition for the if
statement above would become the single condi�
tion x� y � z�

����� Limitations of Certi�cation

One drawback of Denning�s �ow certi�cation is
that it requires security classes of variables to be
known at certi�cation time� So it is unsuitable for
analyzing legacy code unless the code is prepro�
cessed to include appropriate security class decla�
rations for all program objects�
Another� perhaps more serious practical draw�

back� is its treatment of procedures� Procedure
calls� in �ow certi�cation� have the form

call q �a�� � � � � am� b�� � � � � bn�

where the actual input parameters are a�� � � � � am
and the actual output parameters are b�� � � � � bn�
If procedure q has formal input parame�
ters x�� � � � � xm and formal output parameters
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y�� � � � � yn� then the security of the call requires
that three conditions be veri�ed�

�a� q is secure�

�b� ai � xi for i � �� � � � �m� and

�c� yj � bj for j � �� � � � � n�

Conditions �b� and �c� certify �ow into and out
of the procedure respectively� Notice that q can
output results of a higher class than the inputs�
For example� suppose S consists of security classes
L �low� and H �high�� with L� H� and consider

procedure copy �in x � int L� out y � int H�
y �� x

end

Procedure copy copies its input x� declared with
security class L� to its output y of class H�
We can imagine erasing the class declarations

from the procedure so that it could be called to
copy fromH to H or from L to L� giving us a form
of polymorphism with respect to classes� To certify
calls of procedures that are generic with respect to
security classes� Denning proposes replacing con�
ditions �b� and �c� by the single condition

�b�� a� � � � � � am � b� � � � � � bn

under the assumptions that

�� procedure q�s output parameters are derived
solely from the input parameters and informa�
tion in a least class�

�� any local variables of q are erased upon return�
and

�� q does not write into any nonlocal objects�

Notice that �b��� unlike �b� and �c�� does not men�
tion the formal parameters of q� only the actual
parameters of a call� Thus di�erent calls to q can
induce di�erent instances of �b��� so polymorphism
is achieved but at a very high cost� Assumptions
��� are too restrictive in practice� Useful proce�
dures like a monitor for controlling access to a
shared bu�er are prohibited� Also compilers nor�
mallymake no attempt to erase the value of a local

variable on the stack� Besides� these assumptions
still have to be veri�ed before �b�� can be used
which is clearly outside the realm of certi�cation�
Mizuno proposed a more �exible strategy for

certifying recursive procedures in the style of Den�
ning 	��� It involves generating �ow constraints
for a program by computing the least �xed point
of a set of symbolic �ow equations� The equations
are constructed according to Denning�s certi�ca�
tion rules� The strategy� though� is limited to pro�
cedures whose arguments are passed by value or
by result�

��� Ban�atre et al�s Information
Flow Detection

Ban�atre� Bryce� and Le M�etayer give a compile�
time algorithm for detecting information �ow in
sequential programs whereby variables need not be
annotated with security classes 	�� What makes
their work appealing is that the algorithm is de�
rived� through a sequence of steps� from an initial
axiomatic� information��ow logic� The result is
an inference system whose rules are used to trans�
form information �ow graphs� called accessibility

graphs� The result of applying these transforma�
tions to an initial graph for a given program is
a �nal accessibility graph indicating whether the
contents of one variable at some point in the pro�
gram can �ow into an instance of a variable at
some other point� The drawback here is that the
number of vertices in the �nal accessibility graph is
at least linear in the size of the program�s abstract
syntax tree� This means that �nal graphs are ex�
tremely sensitive to program size as we shall see in
Section ���� Thus they are unsuitable as speci�ca�
tions of the secure �ow properties of programs�

� Secure Flow Typing

Type systems have been used to capture a variety
of di�erent kinds of program analyses� A type sys�

tem is basically a set of inference rules with which
one infers various properties of programs� Secure
information �ow is a program property� so we can
characterize it as a type correctness issue�
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The secure �ow type system overcomes the lim�
itations of �ow certi�cation mentioned above and
does not require calculation of least �xed points as
in Mizuno�s approach� It is a uniform framework
for traditional type checking in programming lan�
guages and secure �ow enforcement� That is� the
issue of secure �ows is no longer orthogonal to the
more traditional type correctness issue of whether
a program is well formed� Further� standard type
inference techniques can be used to automate se�
cure �ow analysis in a way that makes it more
practical�
In the secure �ow type system� security classes

are basic types� which we denote here by � � and
the typing rules enforce secure information �ow�
For example� consider the typing rule for an as�
signment statement x �� e�

� � x � � acc� � � e � �
� � x �� e � � cmd

���

In order for the assignment to be well typed� it
must be that

� x is a variable of type � acc�eptor�� meaning
x is capable of storing information at security
level � � and

� expression e has type �security class� � �

Information about x is provided by � which maps
identi�ers to types� So� the rule states that in order
for the assignment x �� e to be judged secure� x
must be a variable that stores information at the
same security level as e� If this is true� then the
rule allows us to ascribe type � cmd to the entire
assignment statement� In general� a statement has
type � cmd only if every variable assigned to in
the statement is capable of storing information at
security level � or higher� Note that Denning�s �ow
certi�cation would not be concerned with whether
x of x �� e is a variable or a constant� But this is
not true of rule ���� which addresses the issue of
well formedness as well as secure �ow�
Another novel aspect of the type system is its

use of subtyping� A �ow policy � S��� naturally
corresponds to a subtype relation� If s� and s� are
members of S� or in other words are basic types�

such that s� � s�� then we say s� is a subtype of
s�� written s� � s��
Notice that typing rule ��� requires x and e to

have the same security level� This might appear
too restrictive for the rule prevents an upward �ow
from e to x� say for example� if x were high and e

low� This is where subtyping comes into play� It
allows us to coerce the type of e from low to high
to get agreement� A detailed formal treatment of
all typing rules and the subtyping logic is outside
the scope of this paper and can be found instead
in 	�
�

��� Polymorphism and Type Infer�
ence

A major advantage of the secure �ow type system
is that it can be implemented using powerful type
inference techniques� A type inference algorithm
not only proves whether a procedure is typable� or
free of illegal �ows� but it also produces a principal
type� which characterizes how the procedure can be
called securely�
A principal type usually comprises a set of sub�

type constraints among security classes� each of the
form �� � ��� Subtype constraints may be generic
and involve type variables that range over all secu�
rity classes� These variables can be specialized in
many di�erent ways� depending on the procedure�s
calling context� A context will require them to be
specialized in a certain way� As long as the spe�
cialization satis�es the constraints� the procedure
can be executed without causing any illegal �ows�
So a procedure is e�ectively parameterized on the
security classes of its formal parameters� In this
sense� it is polymorphic�
For example� consider the procedure

procedure copy �in x � int � out y � int�
begin

y �� x

end

It has the inferred principal type

��� � with � � � � � proc��� � acc�

where � and � are type variables such that � cor�
responds to the security class of x and � to the
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security class of y� The principal type succintly
conveys how the procedure can be securely called�
Any call can be executed securely providing the
arguments of the call have security classes that�
when substituted for the bound variables � and �

of the type� satisfy the constraint � � �� The call
itself will have type � cmd � For instance� copy has
type L proc�L�L acc� and therefore can be called
to copy from low to low� with the call itself being
regarded as a low command of type L cmd � It also
has type H proc�L�H acc�� so it can be called to
copy from low to high� But it cannot be called to
copy from high to low because H �� L�
Notice that in a call to copy� type variables �

and � can be specialized respectively to any se�
curity classes �� and �� as long as the subtype
constraint �� � �� is satis�ed� The constraint� in
Denning�s model� translates into �� � ��� which
is precisely condition �b��� However� in the secure
�ow type system� the constraint is inferred auto�
matically as a consequence of typing the assign�
ment y �� x by rule ���� Denning�s approach to

polymorphism e�ectively limits all typings of pro�

cedures to at most one subtype constraint� namely

the constraint corresponding to �ow condition �b���
This greatly limits the kind of polymorphic proce�
dures one can write� In general� a procedure can
induce multiple subtype constraints� depending on
its de�nition�
It might appear that the number of subtype con�

straints in a principal type would grow too quickly�
in the size of the program� to be useful in prac�
tice� After all� there are programs in the context
of traditional subtyping that require the number of
constraints in their principal types to grow at least
linearly in program size 	�� Obviously� the utility
of a type inference algorithm that produces prin�
cipal types with this many constraints is severely
limited� However� our experience has been that
this kind of growth is not an issue for secure �ow
typing in practice� An inferred principal type for
a program is typically much smaller than the pro�
gram itself due to type simpli�cation 	��� Princi�
pal types are relatively insensitive to program size�
For instance� consider a new version of proce�

dure copy � The original version has an explicit
�ow from x to y� Suppose we accomplish the same

x0 a0 b0

a2 a4 b4 b8

a6 a5 b6 b5

b2

y8

a7 a8 b7

Figure �� Accessibility graph for new copy

e�ect through an implicit �ow instead� This can
be achieved as follows�

procedure copy�in x � int � out y � int�
var a �� x

var b �� �
begin

while a � � do
a �� a	 ��
b �� b� �

od�
y �� b

end

The new version has the same inferred principal
type as the original version even though its de�ni�
tion is quite di�erent�

Contrast this insensitivity with that of calculat�
ing an accessibility graph for the program as de�
scribed in 	�� The graph calculated for the original
version of copy has only the single edge �x�� y���
conveying there is a �ow from x at entry point
p� to y at point p�� These program points arise
from the procedure body expressed with explicit
program points� as in �p�� y �� x�� there is also a
distinguished point� p�� which represents the entry
point of the procedure�

Now compare this simple graph with the graph
in Figure �� which is obtained from the new version
of copy � The new graph is constructed from copy

with explicit program points introduced as follows�






procedure copy�in x � int � out y � int�
var a

var b �� �
�p�� �p�� a �� x��

�p�� �p�� while a � � do
�p�� �p�� a �� a	 ���

�p�� b �� b� ��
�

od��
�p�� y �� b�

�
�

The constructed graph has grown in size propor�
tional to the number of program points �there are
now � such points�� Notice that there is a path
from x� to y� con�rming the implicit �ow from x

at point p� to y at point p� in the program� How�
ever� the graph does not tell us how copy can be
called securely� only that there is a �ow from x to
y� For these reasons� accessibility graphs are un�
suitable as user�level speci�cations of a procedure�s
information �ow properties� Moreover� one can see
that the focus of this approach is on identifying
�ows among instances of program variables� This
leads to other problems that do not arise with se�
cure �ow typing� For example� pointers and alias�
ing of locations complicate graph construction� re�
quiring some form of pointer aliasing analysis�
As a �nal example� consider the library decryp�

tion procedure in Figure �� taken from 	�� The
encrypted character array cipher is decrypted us�
ing key and stored in clear � We assume that the
decryption is done by D and that the cost of doing
the decryption is stored in variable charge�
The principal type inferred for decrypt is

� �� �� �� �
with � � �� � � �� � � ��

� proc��� � arr � � arr � � var�

The type has three subtype constraints that gov�
ern how decrypt can be used securely� Any call of
the procedure can be executed securely provided
the arguments of the call have security classes that
satisfy all the constraints� The call itself will have
type � cmd � For instance� the substitution

� � L� � � H� � � � � L

procedure decrypt�in key � int �
inout cipher � clear � array of char �
inout charge � int�

var i �� �
var unit �� unit rate constant

begin

charge �� unit �
while cipher 	i � � do

if encrypted �cipher 	i� then
charge �� charge � � 
 unit �
clear 	i �� D�cipher 	i� key�

else

charge �� charge � unit �
clear 	i �� cipher 	i

��
i �� i � �

od

end

Figure �� The library decryption procedure

satis�es the constraints� so decrypt can be called
as a procedure with type

L proc�H�L arr �H arr� L var�

and the call will have type L cmd � The call cannot�
however� be typed as H cmd unless the argument
corresponding to charge is high�
Another very useful facet of type inference in

this setting is its ability to reveal suspicious code
through changes in principal types� For example�
if we change the expression

charge �� charge � � 
 unit �

in procedure decrypt to the expression

charge �� charge � key � � 
 unit �

in an attempt to deduce the key from the output
charge� then the principal type of decrypt becomes

� �� �� 	� �� �

with � � �� � � �� � � �� 	 � �� 	 � ��

� proc�	� � arr � � arr � � var�

Notice the two additional subtype constraints 	 �
� and 	 � �� The former says that the security
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level of the clear array must be at least that of the
input key� This constraint stems from the assign�
ment to clear involving a call to the decryption
procedure D with the key as an argument� It did
indeed arise for the original version of decrypt as
well� but it was eliminated through type simpli��
cation� 	 was replaced by �� giving � � � which
was deleted� The latter constraint� on the other
hand� is new� It says that the security level of the
charge parameter must be at least that of the in�
put key� So now any procedure call with a high
key will no longer be well typed unless the charge
parameter is also high� Such a restriction would
likely be unacceptable� but the point here is that
type inference clearly reveals it�

� Discussion

As Denning pointed out� the secure �ow problem
for a typical programming language is undecidable
	�� Consequently� any sound and recursive logic
for proving that programs have no secure �ow vi�
olations is necessarily incomplete� This is a com�
mon tradeo� for the soundness and decidability of
a logical system� So like Denning�s certi�cation�
the type system is incomplete� This means that
the type system may rule out some secure pro�
grams� Although more experience is needed� the
type system has been designed to reduce the num�
ber of false positives 	�
�
The utility of the type system rests on the

proper classi�cation of information� Sometimes an
algorithm will produce sensitive data from inputs
that are not considered sensitive� Examples range
from functions that generate cryptographic keys
to signal processing algorithms designed to extract
target signatures from background noise� Perhaps
neither the inputs nor the arithmetic operations
used in these algorithms would� separately� be con�
sidered sensitive� But they may be used to calcu�
late sensitive data� The type system will not detect
that such data are actually sensitive� However� the
algorithm can be packaged as a procedure whose
type can be asserted to re�ect the di�erent secu�
rity levels of the inputs and outputs� Then the
type system can ensure that it is called securely�

We envision secure �ow typing being used
within Web browsers� speci�cally� within Java�
compatible browsers� One approach being inves�
tigated is to incorporate it into the Class Loader
for Java applets� A Class Loader could perform
secure �ow typing on applet bytecodes and sub�
sume the level of type checking currently done on
instructions of the virtual machine� Such typing
would ensure secrecy and integrity of downloaded
Java applets� In the case of integrity� for instance�
one can imagine �nancial centers serving applets
to users that perform� say� �nancial transactions�
Some applet may need to make an entry into a ��
nancial audit trail and the integrity of the audit
trail must be assured� Secure �ow typing could
be used to certify that an applet does not corrupt
the audit trail with low integrity information of a
transaction�

� Summary

Approaches to the static analysis of code for se�
cure information �ow have had little impact in
practice so far� This paper has described an al�
ternative static analysis that we have argued is an
improvement over these other approaches� Secure
�ow analysis is characterized as a type inference
problem� Procedures that have no illegal �ows are
given principal types that convey how they can be
called securely in di�erent contexts� These types
can serve as speci�cations for the secure �ow prop�
erties of programs� The role of secure �ow typ�
ing in Web programming� like that encouraged by
Java� needs further investigation� However� it is
clear that such type inference can provide a �ner
level of security for clients than is currently avail�
able in certain Web browsers�
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